Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

 Kerstin Enflo. Foto.

Kerstin Enflo

Professor

 Kerstin Enflo. Foto.

Reading the ransom: Methodological advancements in extracting the Swedish Wealth Tax of 1571

Författare

  • Christopher Blomqvist
  • Kerstin Enflo
  • Andreas Jakobsson
  • Kalle Åström

Summary, in English

We describe a deep learning method to read hand-written records from the 16th century. The method consists of a combination of a segmentation module and a Handwritten Text Recognition (HTR) module. The transformer-based HTR module exploits both language and image features in reading, classifying and extracting the position of each word on the page. The method is demonstrated on a unique historical document: The Swedish Wealth Tax of 1571. Results suggest that the segmentation module performs significantly better than the lay-out analysis implemented in state-of-the art programs, enabling us to trace many more text blocks correctly on each page. The HTR module has a low character error rate (CER), in addition to being able to classify words and help organize them into tabular formats. By demonstrating an automated process to transform loosely structured handwritten information from the 16th century into organized tables, our method should interest economic historians seeking to digitize and organize quantitative material from pre-industrial periods.

Avdelning/ar

  • Ekonomisk-historiska institutionen
  • Tillväxt, teknologisk förändring och ojämlikhet
  • LTH profilområde: AI och digitalisering
  • LTH profilområde: Teknik för hälsa
  • eSSENCE: The e-Science Collaboration
  • Matematisk statistik
  • Biomedical Modelling and Computation
  • Statistical Signal Processing Group
  • Stroke Imaging Research group
  • Matematik LTH
  • ELLIIT: the Linköping-Lund initiative on IT and mobile communication
  • Mathematical Imaging Group

Publiceringsår

2023

Språk

Engelska

Publikation/Tidskrift/Serie

Explorations in Economic History

Volym

87

Dokumenttyp

Artikel i tidskrift

Förlag

Elsevier

Ämne

  • Economic History

Aktiv

Published

Projekt

  • Praise the people or praise the place: How culture and specialization drive long-term regional growth

Forskningsgrupp

  • Biomedical Modelling and Computation
  • Statistical Signal Processing Group
  • Stroke Imaging Research group
  • Mathematical Imaging Group

ISBN/ISSN/Övrigt

  • ISSN: 0014-4983