Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Porträtt av Krzysztof Podgórski. Foto.

Krzysztof Podgórski

Prefekt Statistiska institutionen, Professor

Porträtt av Krzysztof Podgórski. Foto.

Fatigue damage assessment for a spectral model of non-Gaussian random loads

Författare

  • Sofia Åberg
  • Krzysztof Podgorski
  • Igor Rychlik

Summary, in English

In this paper, anew model for random loads - the Laplace driven moving average - is presented. The model is second order, non-Gaussian, and strictly stationary. It shares with its Gaussian counterpart the ability to model any spectrum but has additional flexibility to model the skewness and kurtosis of the marginal distribution. Unlike most other non-Gaussian models proposed in the literature, such as the transformed Gaussian or Volterra series models, the new model is no longer derivable from Gaussian processes. In the paper, a summary of the properties of the new model is given and its upcrossing intensities are evaluated. Then it is used to estimate fatigue damage both from simulations and in terms of an upper bound that is of particular use for narrowband spectra. (C) 2009 Elsevier Ltd. All rights reserved.

Avdelning/ar

  • Matematisk statistik
  • Statistiska institutionen

Publiceringsår

2009

Språk

Engelska

Sidor

608-617

Publikation/Tidskrift/Serie

Probabilistic Engineering Mechanics

Volym

24

Issue

4

Dokumenttyp

Artikel i tidskrift

Förlag

Elsevier

Ämne

  • Probability Theory and Statistics

Nyckelord

  • Non-Gaussian process
  • Moving average
  • Rice's formula
  • Spectral density
  • Fatigue damage
  • Laplace distribution

Aktiv

Published

ISBN/ISSN/Övrigt

  • ISSN: 0266-8920