Krzysztof Podgórski
Prefekt Statistiska institutionen, Professor
Convolution-invariant subclasses of generalized hyperbolic distributions
Författare
Summary, in English
It is rigorously shown that the generalized Laplace distributions and the normal inverse Gaussian distributions are the only subclasses of the generalized hyperbolic distributions that are closed under convolution. The result is obtained by showing that the corresponding two classes of variance mixing distributionsgamma and inverse Gaussianare the only convolution-invariant classes of the generalized inverse Gaussian distributions.
Avdelning/ar
- Statistiska institutionen
- Matematisk statistik
Publiceringsår
2016
Språk
Engelska
Sidor
98-103
Publikation/Tidskrift/Serie
Communications in Statistics: Theory and Methods
Volym
45
Issue
1
Dokumenttyp
Artikel i tidskrift
Förlag
Marcel Dekker
Ämne
- Probability Theory and Statistics
Nyckelord
- Bessel function distribution
- Gamma variance normal mixture
- Generalized
- inverse Gaussian distribution
- Generalized asymmetric Laplace
- distribution
- Inverse gamma distribution
- Variance-mean normal mixture
Aktiv
Published
ISBN/ISSN/Övrigt
- ISSN: 0361-0926