Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Porträtt av Krzysztof Podgórski. Foto.

Krzysztof Podgórski

Prefekt Statistiska institutionen, Professor

Porträtt av Krzysztof Podgórski. Foto.

Singular Inverse Wishart Distribution with Application to Portfolio Theory

Författare

  • Taras Bodnar
  • Stepan Mazur
  • Krzysztof Podgorski

Summary, in English

The inverse of the standard estimate of covariance matrix is frequently used in the portfolio theory to estimate the optimal portfolio weights. For this problem, the distribution of the linear transformation of the inverse is needed. We obtain this distribution in the case when the sample size is smaller than the dimension, the underlying covariance matrix is singular, and the vectors of returns are independent and normally distributed. For the result, the distribution of the inverse of covariance estimate is needed and it is derived and referred to as the singular inverse Wishart distribution. We use these results to provide an explicit stochastic representation of an estimate of the mean-variance portfolio weights as well as to derive its characteristic function and the moments of higher order.

Avdelning/ar

  • Statistiska institutionen

Publiceringsår

2015

Språk

Svenska

Publikation/Tidskrift/Serie

Working Papers in Statistics

Issue

2

Dokumenttyp

Working paper

Förlag

Department of Statistics, Lund university

Ämne

  • Probability Theory and Statistics

Nyckelord

  • singular Wishart distribution
  • mean-variance portfolio
  • sample estimate of precision matrix
  • Moore-Penrose inverse

Aktiv

Published