Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Porträtt av Krzysztof Podgórski. Foto.

Krzysztof Podgórski

Prefekt Statistiska institutionen, Professor

Porträtt av Krzysztof Podgórski. Foto.

Estimation for Stochastic Models Driven by Laplace Motion

Författare

  • Krzysztof Podgorski
  • Jörg Wegener

Summary, in English

Laplace motion is a Levy process built upon Laplace distributions. Non Gaussian stochastic fields that are integrals with respect to this process are considered and methods for their model fitting are discussed. The proposed procedures allow for inference about the parameters of the underlying Laplace distributions. A fit of dependence structure is also addressed. The importance of a convenient parameterization that admits natural and consistent estimation for this class of models is emphasized. Several parameterizations are introduced and their advantages over one another discussed. The proposed estimation method targets the standard characteristics: mean, variance, skewness and kurtosis. Their sample equivalents are matched in the closest possible way as allowed by natural constraints within this class. A simulation study and an example of potential applications conclude the article.

Avdelning/ar

  • Statistiska institutionen
  • Matematisk statistik
  • MERGE: ModElling the Regional and Global Earth system

Publiceringsår

2011

Språk

Engelska

Sidor

3281-3302

Publikation/Tidskrift/Serie

Communications in Statistics: Theory and Methods

Volym

40

Issue

18

Dokumenttyp

Artikel i tidskrift

Förlag

Marcel Dekker

Ämne

  • Probability Theory and Statistics

Nyckelord

  • Kurtosis
  • Laplace distribution
  • Method of moment estimation
  • Moving
  • averages
  • Skewness
  • Stochastic fields

Aktiv

Published

ISBN/ISSN/Övrigt

  • ISSN: 0361-0926