Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Porträtt av Krzysztof Podgórski. Foto.

Krzysztof Podgórski

Prefekt Statistiska institutionen, Professor

Porträtt av Krzysztof Podgórski. Foto.

Lamperti Transform and a Series Decomposition of Fractional Brownian Motion

Författare

  • Anastassia Baxevani
  • Krzysztof Podgorski

Summary, in English

The Lamperti transformation of a self-similar process is a strictly stationary process.

In particular, the fractional Brownian motion transforms to the second order stationary Gaussian process.

This process is represented as a series of independent processes.

The terms of this series are Ornstein-Uhlenbeck processes if $H<1/2$, and linear combinations of two dependent Ornstein-Uhlenbeck processes whose two dimensional structure is Markovian if $H>1/2$.

From the representation effective approximations of the process are derived.

The corresponding results for the fractional Brownian motion are obtained by applying the inverse Lamperti transformation.

Implications for simulating the fractional Brownian motion are discussed.

Avdelning/ar

  • Statistiska institutionen

Publiceringsår

2007

Språk

Engelska

Publikation/Tidskrift/Serie

Preprints in Mathematical Sciences

Issue

2007:34

Dokumenttyp

Artikel i tidskrift

Förlag

Lund University

Ämne

  • Probability Theory and Statistics

Nyckelord

  • spectral density
  • covariance function
  • stationary Gaussian processes
  • long-range dependence

Aktiv

Unpublished

ISBN/ISSN/Övrigt

  • ISSN: 1403-9338