Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Porträtt av Krzysztof Podgórski. Foto.

Krzysztof Podgórski

Prefekt Statistiska institutionen, Professor

Porträtt av Krzysztof Podgórski. Foto.

Rational characteristic functions and geometric infinite divisibility

Författare

  • Tomasz J. Kozubowski
  • Krzysztof Podgorski

Summary, in English

Motivated by the fact that exponential and Laplace distributions have rational characteristic functions and are both geometric infinitely divisible (GID), we investigate the latter property in the context of more general probability distributions on the real line with rational characteristic functions of the form P(t)/Q (t), where P(t) = 1 + a(1)it + a(2)(it)(2) and Q (t) = 1 + b(1)it + b(2)(it)(2). Our results provide a complete characterization of the class of characteristic functions of this form, and include a description of their GID subclass. In particular, we obtain characteristic functions in the class and the subclass that are neither exponential nor Laplace. (C) 2009 Elsevier Inc. All rights reserved.

Avdelning/ar

  • Statistiska institutionen

Publiceringsår

2010

Språk

Engelska

Sidor

625-637

Publikation/Tidskrift/Serie

Journal of Mathematical Analysis and Applications

Volym

365

Issue

2

Dokumenttyp

Artikel i tidskrift

Förlag

Elsevier

Ämne

  • Probability Theory and Statistics

Nyckelord

  • Mixture of Laplace distributions
  • transform
  • Inverse Fourier
  • Skewed Laplace distribution
  • Geometric distribution
  • Convolution of exponential
  • distributions

Aktiv

Published

ISBN/ISSN/Övrigt

  • ISSN: 0022-247X