Krzysztof Podgórski
Prefekt Statistiska institutionen, Professor
Rational characteristic functions and geometric infinite divisibility
Författare
Summary, in English
Motivated by the fact that exponential and Laplace distributions have rational characteristic functions and are both geometric infinitely divisible (GID), we investigate the latter property in the context of more general probability distributions on the real line with rational characteristic functions of the form P(t)/Q (t), where P(t) = 1 + a(1)it + a(2)(it)(2) and Q (t) = 1 + b(1)it + b(2)(it)(2). Our results provide a complete characterization of the class of characteristic functions of this form, and include a description of their GID subclass. In particular, we obtain characteristic functions in the class and the subclass that are neither exponential nor Laplace. (C) 2009 Elsevier Inc. All rights reserved.
Avdelning/ar
- Statistiska institutionen
Publiceringsår
2010
Språk
Engelska
Sidor
625-637
Publikation/Tidskrift/Serie
Journal of Mathematical Analysis and Applications
Volym
365
Issue
2
Dokumenttyp
Artikel i tidskrift
Förlag
Elsevier
Ämne
- Probability Theory and Statistics
Nyckelord
- Mixture of Laplace distributions
- transform
- Inverse Fourier
- Skewed Laplace distribution
- Geometric distribution
- Convolution of exponential
- distributions
Aktiv
Published
ISBN/ISSN/Övrigt
- ISSN: 0022-247X