Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Porträtt av Krzysztof Podgórski. Foto.

Krzysztof Podgórski

Prefekt Statistiska institutionen, Professor

Porträtt av Krzysztof Podgórski. Foto.

Second-order continuous time moving avaerages via spectral representation

Författare

  • Krzysztof Podgorski
  • Anastassia Baxevani

Summary, in English

The spectral representation of a moving average process obtained as a convolution of a kernel with a general noise measure is studied. A proof of the spectral theorem that yields explicit expression for the spectral measure in terms of the noise measure is presented. The main interest is in noise measures generated by second order Lévy motions. For practical considerations, such measures are easily available through independent sampling. On the other hand spectral measures are not since their increments are dependent, with the notable exception of the Gaussian noise case.



For this reason the issue of approximating the spectral measure by independent increments of the noise is also addressed. For the purpose of approximating the moving average process through sums of trigonometric functions, the mean square error of discretization of the spectral representation is assessed. For a specified accuracy, the coefficients of approximation are explicitly given. The method is illustrated for moving averages processes driven by Laplace motion.

Avdelning/ar

  • Statistiska institutionen

Publiceringsår

2015

Språk

Engelska

Publikation/Tidskrift/Serie

Working Papers in Statistics

Issue

7

Dokumenttyp

Working paper

Förlag

Department of Statistics, Lund university

Ämne

  • Probability Theory and Statistics

Nyckelord

  • generalized Laplace distribution
  • moving average processes
  • weakly stationary

Aktiv

Published