Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Porträtt av Krzysztof Podgórski. Foto.

Krzysztof Podgórski

Prefekt Statistiska institutionen, Professor

Porträtt av Krzysztof Podgórski. Foto.

Data driven orthogonal basis selection for functional data analysis

Författare

  • Rani Basna
  • Hiba Nassar
  • Krzysztof Podgórski

Summary, in English

Functional data analysis is typically performed in two steps: first, functionally representing discrete observations, and then applying functional methods, such as the functional principal component analysis, to the so-represented data. While the initial choice of a functional representation may have a significant impact on the second phase of the analysis, this issue has not gained much attention in the past. Typically, a rather ad hoc choice of some standard basis such as Fourier, wavelets, splines, etc. is used for the data transforming purpose. To address this important problem, we present its mathematical formulation, demonstrate its importance, and propose a data-driven method of functionally representing observations. The method chooses an initial functional basis by an efficient placement of the knots. A simple machine learning style algorithm is utilized for the knot selection and recently introduced orthogonal spline bases - splinets - are eventually taken to represent the data. The benefits are illustrated by examples of analyses of sparse functional data.

Avdelning/ar

  • Statistiska institutionen

Publiceringsår

2022

Språk

Engelska

Sidor

104868-104868

Publikation/Tidskrift/Serie

Journal of Multivariate Analysis

Volym

189

Dokumenttyp

Artikel i tidskrift

Förlag

Academic Press

Ämne

  • Mathematics

Nyckelord

  • Functional data analysis
  • Machine learning
  • Splines

Aktiv

Published

ISBN/ISSN/Övrigt

  • ISSN: 0047-259X