Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Porträtt av Krzysztof Podgórski. Foto.

Krzysztof Podgórski

Prefekt Statistiska institutionen, Professor

Porträtt av Krzysztof Podgórski. Foto.

A novel weighted likelihood estimation with empirical Bayes flavor

Författare

  • Md Mobarak Hossain
  • Tomasz J. Kozubowski
  • Krzysztof Podgórski

Summary, in English

We propose a novel approach to estimation, where a set of estimators of a parameter is combined into a weighted average to produce the final estimator. The weights are chosen to be proportional to the likelihood evaluated at the estimators. We investigate the method for a set of estimators obtained by using the maximum likelihood principle applied to each individual observation. The method can be viewed as a Bayesian approach with a data-driven prior distribution. We provide several examples illustrating the new method and argue for its consistency, asymptotic normality, and efficiency. We also conduct simulation studies to assess the performance of the estimators. This straightforward methodology produces consistent estimators comparable with those obtained by the maximum likelihood method. The method also approximates the distribution of the estimator through the “posterior” distribution.

Avdelning/ar

  • Statistiska institutionen

Publiceringsår

2018-02-07

Språk

Engelska

Sidor

392-412

Publikation/Tidskrift/Serie

Communications in Statistics: Simulation and Computation

Volym

47

Issue

2

Dokumenttyp

Artikel i tidskrift

Förlag

Taylor & Francis

Ämne

  • Probability Theory and Statistics

Nyckelord

  • Consistency
  • Data-dependent prior
  • Empirical Bayes
  • Exponentiated distribution
  • Maximum likelihood estimator
  • Super-efficiency
  • Unbounded likelihood

Aktiv

Published

ISBN/ISSN/Övrigt

  • ISSN: 0361-0918