Krzysztof Podgórski
Prefekt Statistiska institutionen, Professor
Sample Path Asymmetries in Non-Gaussian Random Processes
Författare
Summary, in English
We tackle an important although rarely addressed question of accounting for a variety of asymmetries frequently observed in stochastic temporal/spatial records. First, we review some measures intending to capture such asymmetries that have been introduced on various occasions in the past and then propose a family of measures that is motivated by Rice's formula for crossing level distributions of the slope. We utilize those asymmetry measures to demonstrate how a class of second-order models built on the skewed Laplace distributions can account for sample path asymmetries. It is shown that these models are capable of mimicking not only distributional skewness but also more complex geometrical asymmetries in the sample path such as tilting, front-back slope asymmetry and time irreversibility. Simple moment-based estimation techniques are briefly discussed to allow direct application to modelling and fitting actual records.
Avdelning/ar
- Statistiska institutionen
- Matematisk statistik
Publiceringsår
2014
Språk
Engelska
Sidor
1102-1123
Publikation/Tidskrift/Serie
Scandinavian Journal of Statistics
Volym
41
Issue
4
Dokumenttyp
Artikel i tidskrift
Förlag
Wiley-Blackwell
Ämne
- Probability Theory and Statistics
Nyckelord
- Laplace distribution
- Matern covariance
- moving average processes
- Rice
- formula
- stationary second-order processes
- tilting
- time
- irreversibility
Aktiv
Published
ISBN/ISSN/Övrigt
- ISSN: 1467-9469