Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Porträtt av Krzysztof Podgórski. Foto.

Krzysztof Podgórski

Prefekt Statistiska institutionen, Professor

Porträtt av Krzysztof Podgórski. Foto.

Singular inverse Wishart distribution and its application to portfolio theory

Författare

  • Stepan Mazur
  • Taras Bodnar
  • Krzysztof Podgorski

Summary, in English

The inverse of the standard estimate of covariance matrix is frequently used in the portfolio theory to estimate the optimal portfolio weights. For this problem, the distribution of the linear transformation of the inverse is needed. We obtain this distribution in the case when the sample size is smaller than the dimension, the underlying covariance matrix is singular, and the vectors of returns are independent and normally distributed. For the result, the distribution of the inverse of covariance estimate is needed and it is derived and referred to as the singular inverse Wishart distribution. We use these results to provide an explicit stochastic representation of an estimate of the mean–variance portfolio weights as well as to derive its characteristic function and the moments of higher order. The results are illustrated using actual stock returns and a discussion of practical relevance of the model is presented.

Avdelning/ar

  • Statistiska institutionen

Publiceringsår

2016

Språk

Engelska

Sidor

314-326

Publikation/Tidskrift/Serie

Journal of Multivariate Analysis

Volym

143

Dokumenttyp

Artikel i tidskrift

Förlag

Academic Press

Ämne

  • Probability Theory and Statistics

Nyckelord

  • Mean–variance portfolio
  • Singular Wishart distribution
  • Sample estimate of precision matrix
  • Moore–Penrose inverse

Aktiv

Published

ISBN/ISSN/Övrigt

  • ISSN: 0047-259X