Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Porträtt av Krzysztof Podgórski. Foto.

Krzysztof Podgórski

Prefekt Statistiska institutionen, Professor

Porträtt av Krzysztof Podgórski. Foto.

Empirically Driven Orthonormal Bases for Functional Data Analysis

Författare

  • Hiba Nassar
  • Krzysztof Podgórski

Redaktör

  • Fred J. Vermolen
  • Cornelis Vuik

Summary, in English

In implementations of the functional data methods, the effect of the initial choice of an orthonormal basis has not been properly studied. Typically, several standard bases such as Fourier, wavelets, splines, etc. are considered to transform observed functional data and a choice is made without any formal criteria indicating which of the bases is preferable for the initial transformation of the data. In an attempt to address this issue, we propose a strictly data-driven method of orthonormal basis selection. The method uses B-splines and utilizes recently introduced efficient orthornormal bases called the splinets. The algorithm learns from the data in the machine learning style to efficiently place knots. The optimality criterion is based on the average (per functional data point) mean square error and is utilized both in the learning algorithms and in comparison studies. The latter indicate efficiency that could be used to analyze responses to a complex physical system.

Avdelning/ar

  • Statistiska institutionen

Publiceringsår

2021

Språk

Engelska

Sidor

773-783

Publikation/Tidskrift/Serie

Lecture Notes in Computational Science and Engineering

Volym

139

Dokumenttyp

Konferensbidrag

Förlag

Springer Science and Business Media B.V.

Ämne

  • Control Engineering

Conference name

European Conference on Numerical Mathematics and Advanced Applications, ENUMATH 2019

Conference date

2019-09-30 - 2019-10-04

Conference place

Egmond aan Zee, Netherlands

Aktiv

Published

ISBN/ISSN/Övrigt

  • ISSN: 2197-7100
  • ISSN: 1439-7358
  • ISBN: 9783030558734
  • ISBN: 978-3-030-55874-1